Opendata, web and dolomites

CELL-in-CELL SIGNED

Understanding host cellular systems that drive an endosymbiotic interaction

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 CELL-in-CELL project word cloud

Explore the words cloud of the CELL-in-CELL project. It provides you a very rough idea of what is the project "CELL-in-CELL" about.

adaptations    sections    endosymbiont    recipient    celled    rnai    relationship    endosymbiotic    compartments    eukaryotes    cellular    explore    cell    changing    eukaryotic    genome    proteins    chart    candidate    transfer    followed    advancing    stable    silenced    continually    complexity    evolution    drive    protist    genes    critical    event    localisation    huge    nascent    tree    organelles    driving    little    diversify    functions    shaping    separately    endosymbiosis    single    separated    function    generating    reinitiated    origin    perturb    silencing    endosymbioses    algae    roots    phenomenon    grown    harbours    incubate    biological    knockdown    encoded    gene    moments    form    fundamentally    interactions    host    core    phototrophic    population    interaction    life    first    screening    diversity    diversification    time    played    paramecium    bursaria    multiple    green    evolutionary    sequencing    experiment    conduct    trajectory    significantly   

Project "CELL-in-CELL" data sheet

The following table provides information about the project.

Coordinator
THE UNIVERSITY OF EXETER 

Organization address
address: THE QUEEN'S DRIVE NORTHCOTE HOUSE
city: EXETER
postcode: EX4 4QJ
website: www.ex.ac.uk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Total cost 2˙602˙483 €
 EC max contribution 2˙602˙483 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2018-COG
 Funding Scheme ERC-COG
 Starting year 2019
 Duration (year-month-day) from 2019-06-01   to  2024-05-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    THE UNIVERSITY OF EXETER UK (EXETER) coordinator 2˙602˙483.00

Map

 Project objective

Endosymbiosis is a key phenomenon that has played a critical role in shaping biological diversity, driving gene transfer and generating cellular complexity. During the process of endosymbiosis, one cell is integrated within another to become a critical component of the recipient, changing its characteristics and allowing it to chart a distinct evolutionary trajectory. Endosymbiosis was fundamentally important to the origin and evolution of eukaryotic cellular complexity, because an endosymbiotic event roots the diversification of all known eukaryotes and endosymbiosis has continually driven the diversification of huge sections of the eukaryotic tree of life. Little is known about how nascent endosymbioses are established or how they go on to form novel cellular compartments known as endosymbiotic organelles. Paramecium bursaria is a single celled protist that harbours multiple green algae within to form a phototrophic endosymbiosis. This relationship is nascent as the partners can be separated, grown separately, and the endosymbiosis reinitiated. This project will identify, for the first time, the gene functions that enable one cell to incubate another within to form a stable endosymbiotic interaction. To identify and explore which host genes control endosymbiosis in P. bursaria we have developed RNAi silencing technology. In the proposed project we will conduct genome sequencing, followed by a large-scale RNAi knockdown screening experiment, to identify host genes that when silenced perturb the endosymbiont population. Having identified candidate genes, we will investigate the localisation and function of the host encoded proteins. This project will significantly change our current understanding of the evolutionary phenomenon of endosymbiosis by identifying the cellular adaptations that drive these interactions, advancing our understanding of how these important moments in evolution occur and how core cellular systems can diversify in function.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "CELL-IN-CELL" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "CELL-IN-CELL" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

RESOURCE Q (2019)

Efficient Conversion of Quantum Information Resources

Read More  

U-HEART (2018)

Unbreakable HEART: a reconfigurable and self-healing isolated dc/dc converter (U-HEART)

Read More  

AllergenDetect (2019)

Comprehensive allergen detection using synthetic DNA libraries

Read More