Opendata, web and dolomites

nalimdif SIGNED

Non-Archimedean limits of differential forms, Gromov-Hausdorff limits and essential skeleta

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 nalimdif project word cloud

Explore the words cloud of the nalimdif project. It provides you a very rough idea of what is the project "nalimdif" about.

projective    differential    xu    analytic    family    hypek    monge    fernex    conjecture    soibelman    limit    thirdly    tosatti    calabi    unipotent    tools    secondly    de    normalized    affine    forms    flat    gross    isomorphism    polarization    auml    subset    assuming    fibration    musta    wilson    structure    progress    zhang    give    spaces    ampere       hler    degenerating    singular    equations    gromov    koll    manifolds    dimensional    notion    diameter    variants    collapsing    base    extensively    statement    archimeadean    beginning    isomorphic    limits    exist    hausdorff    conjectured    aacute    space    yau    active    varieties    firstly    class    picture    todorov    unfortunately    ducros    2000s    posit    geometric    latter    loir    odd    theory    manifold    kontsevich    monodromy    string    attack    archimedean    conjectures    either    naturally    syz    nicaise    metric    natural    corresponding    chambert    solutions    canonical    maximally    originating    fibres    ricci    independently    existence   

Project "nalimdif" data sheet

The following table provides information about the project.

Coordinator
KATHOLIEKE UNIVERSITEIT LEUVEN 

Organization address
address: OUDE MARKT 13
city: LEUVEN
postcode: 3000
website: www.kuleuven.be

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Belgium [BE]
 Total cost 166˙320 €
 EC max contribution 166˙320 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2018
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2019
 Duration (year-month-day) from 2019-10-01   to  2021-09-30

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    KATHOLIEKE UNIVERSITEIT LEUVEN BE (LEUVEN) coordinator 166˙320.00

Map

 Project objective

In the beginning of 2000s Kontsevich and Soibelman have introduced two variants of the SYZ conjecture originating from string theory: a non-Archimeadean one and a differential-geometric one. Both of these conjectures posit existence of a singular affine manifold (the base of the SYZ fibration) that can be obtained either as a subset of the non-Archimedean analytic space associated to a family of complex projective Calabi-Yau varieties with maximally unipotent monodromy, or as a Gromov-Hausdorff limit of fibres of the family with Ricci-flat metric in the polarization class and normalized diameter (the latter was also independently conjectured by Gross, Wilson, and Todorov). Recent years have seen active developments in both of these conjectures through work of de Fernex, Kollár, MustaÅ£a, Nicaise, Xu, Gross, Tosatti, Zhang and others. Kontsevich and Soibelman have also conjectured that both approaches give the same result, with corresponding singular affine manifolds naturally isomorphic; unfortunately, the existence of such an isomorphism is open as of now.

The aim of this project is to build tools that will allow both to attack the comparison conjecture and to make progress in the understanding of the collapsing Gromov-Hausdorff limits in the odd-dimensional case (hypekähler case having been extensively studied). The proposed approach is based on the theory of differential forms on non-Archimedean analytic spaces due to Chambert-Loir and Ducros. Firstly, a notion of a non-Archimedean limit of a degenerating family of real forms with values in Chambert-Loir-Ducros forms will be defined. Secondly, the metric structure of the collapsing limit will be described in terms of such non-Archimedean limits of Kähler forms. Thirdly, the canonical affine structure on the limit space conjectured to exist in the metric picture will be studied using non-Archimedean methods, assuming a natural statement about the limits of the solutions of Monge-Ampere equations.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "NALIMDIF" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "NALIMDIF" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

MY MITOCOMPLEX (2021)

Functional relevance of mitochondrial supercomplex assembly in myeloid cells

Read More  

ENGECON (2019)

Engaged Economists. Politics, profession and economics in the left-wing commitment, 1930s-1960s.

Read More  

COLEX (2019)

Coopetition and Legislation in the Spanish Netherlands (1598-1665)

Read More