Opendata, web and dolomites

SiGNATURE SIGNED

Selection of human iPSC-derived cardiomyocytes by sinGle cell geNe expression and pAtch clamp for a maTUre caRdiac modEl

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 SiGNATURE project word cloud

Explore the words cloud of the SiGNATURE project. It provides you a very rough idea of what is the project "SiGNATURE" about.

lines    cm    variant    unexpected    molecular    expressed    electrophysiology    contributions    autonomous    function    evident    lab    whom    stem    academic    maturation    least    cardiomyocyte    understand    pluripotent    suitable    signature    expression    validated    human    selecting    electrical    share    outcome    hipsc    precisely    incidence    phenotypes    discovery    preclinical    first    line    recapitulate    interdisciplinary    chemotherapeutics    presently    inter    limiting    replace    genes    splice    mature    personalized    host    disease    private    ethnic    3d    underlying    proof    models    animal    drug    safety    sufficient    immature    genetic    culture    markers    postnatally    expertise    good    view    aging    drugs    gender    preferably    imprinted    variability    adult    individual    rates    phenotype    functionally    cardiomyocytes    conventional    combining    arrhythmias    candidates    cardiac    correlating    genome    reveal    single    caused    mechanisms    cell    gene    screening    diseases    cms    simultaneously   

Project "SiGNATURE" data sheet

The following table provides information about the project.

Coordinator
ACADEMISCH ZIEKENHUIS LEIDEN 

Organization address
address: ALBINUSDREEF 2
city: LEIDEN
postcode: 2333 ZA
website: www.lumc.nl

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Netherlands [NL]
 Total cost 187˙572 €
 EC max contribution 187˙572 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2018
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2020
 Duration (year-month-day) from 2020-02-01   to  2022-01-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    ACADEMISCH ZIEKENHUIS LEIDEN NL (LEIDEN) coordinator 187˙572.00

Map

 Project objective

The incidence of cardiac arrhythmias in Europe is increasing because of aging and unexpected side effects of drugs, such as chemotherapeutics. To understand mechanisms underlying these conditions requires reliable preferably human models. Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) are presently good candidates since they share the genome of the individual from whom they are derived and can thus recapitulate genetic, ethnic and gender contributions to the cardiac disease phenotypes. However, their immature state and high inter- and intra-line variability is limiting their value as preclinical models. In the proposed project, I will address these issues through an interdisciplinary approach combining a unique 3D culture maturation system developed in my host lab with my expertise in electrophysiology. I will characterize gene expression and electrical properties of single cardiomyocytes simultaneously with view to directly correlating genes with function and identify molecular markers associated with the functionally mature cardiac phenotype. Two genetic cardiac diseases (one caused by an imprinted gene, the other by a postnatally expressed splice variant) for which the host already has hiPSC lines, will be used as proof of concept that hiPSC-CM maturation in this system is sufficient (i) to reveal disease phenotypes not evident in conventional culture and (ii) to identify molecular markers suitable for selecting mature hiPSC-CMs for drug testing. Overall, this project will provide the first functionally-relevant gene signature of (mature) hiPSC-CMs, and thus be an important advance in modelling all cardiomyocyte autonomous cardiac diseases more precisely for (personalized) drug screening. The outcome will be available to academic and private researchers to enhance rates of drug discovery and safety, and promote hiPSC-CMs as validated adult cardiac models to replace, at least in part, the use of animal models.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "SIGNATURE" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "SIGNATURE" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

MacMeninges (2019)

Control of Central Nervous Sytem inflammation by meningeal macrophages, and its impairment upon aging

Read More  

5G-ACE (2019)

Beyond 5G: 3D Network Modelling for THz-based Ultra-Fast Small Cells

Read More  

IMPRESS (2019)

Integrated Modular Power Conversion for Renewable Energy Systems with Storage

Read More