Opendata, web and dolomites

SiGNATURE SIGNED

Selection of human iPSC-derived cardiomyocytes by sinGle cell geNe expression and pAtch clamp for a maTUre caRdiac modEl

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 SiGNATURE project word cloud

Explore the words cloud of the SiGNATURE project. It provides you a very rough idea of what is the project "SiGNATURE" about.

good    adult    understand    drugs    cardiomyocytes    presently    line    contributions    cardiomyocyte    rates    suitable    host    aging    functionally    preclinical    3d    electrophysiology    postnatally    culture    incidence    expression    expertise    variability    genome    models    reveal    human    precisely    disease    conventional    gender    correlating    chemotherapeutics    academic    single    candidates    private    recapitulate    animal    immature    markers    screening    function    interdisciplinary    caused    pluripotent    unexpected    evident    variant    molecular    gene    simultaneously    selecting    hipsc    drug    first    limiting    discovery    inter    genes    cardiac    whom    splice    least    diseases    share    electrical    mechanisms    outcome    cm    view    preferably    expressed    phenotypes    signature    arrhythmias    ethnic    validated    safety    proof    maturation    combining    underlying    cms    stem    replace    autonomous    personalized    mature    cell    genetic    lines    individual    lab    phenotype    sufficient    imprinted   

Project "SiGNATURE" data sheet

The following table provides information about the project.

Coordinator
ACADEMISCH ZIEKENHUIS LEIDEN 

Organization address
address: ALBINUSDREEF 2
city: LEIDEN
postcode: 2333 ZA
website: www.lumc.nl

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Netherlands [NL]
 Total cost 187˙572 €
 EC max contribution 187˙572 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2018
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2020
 Duration (year-month-day) from 2020-02-01   to  2022-01-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    ACADEMISCH ZIEKENHUIS LEIDEN NL (LEIDEN) coordinator 187˙572.00

Map

 Project objective

The incidence of cardiac arrhythmias in Europe is increasing because of aging and unexpected side effects of drugs, such as chemotherapeutics. To understand mechanisms underlying these conditions requires reliable preferably human models. Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) are presently good candidates since they share the genome of the individual from whom they are derived and can thus recapitulate genetic, ethnic and gender contributions to the cardiac disease phenotypes. However, their immature state and high inter- and intra-line variability is limiting their value as preclinical models. In the proposed project, I will address these issues through an interdisciplinary approach combining a unique 3D culture maturation system developed in my host lab with my expertise in electrophysiology. I will characterize gene expression and electrical properties of single cardiomyocytes simultaneously with view to directly correlating genes with function and identify molecular markers associated with the functionally mature cardiac phenotype. Two genetic cardiac diseases (one caused by an imprinted gene, the other by a postnatally expressed splice variant) for which the host already has hiPSC lines, will be used as proof of concept that hiPSC-CM maturation in this system is sufficient (i) to reveal disease phenotypes not evident in conventional culture and (ii) to identify molecular markers suitable for selecting mature hiPSC-CMs for drug testing. Overall, this project will provide the first functionally-relevant gene signature of (mature) hiPSC-CMs, and thus be an important advance in modelling all cardiomyocyte autonomous cardiac diseases more precisely for (personalized) drug screening. The outcome will be available to academic and private researchers to enhance rates of drug discovery and safety, and promote hiPSC-CMs as validated adult cardiac models to replace, at least in part, the use of animal models.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "SIGNATURE" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "SIGNATURE" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

TOPOCIRCUS (2019)

Simulations of Topological Phases in Superconducting Circuits

Read More  

ICARUS (2020)

Information Content of locAlisation: fRom classical to qUantum Systems

Read More  

ASIQS (2019)

Antiferromagnetic spintronics investigated by quantum sensing techniques

Read More