Opendata, web and dolomites

SiGNATURE SIGNED

Selection of human iPSC-derived cardiomyocytes by sinGle cell geNe expression and pAtch clamp for a maTUre caRdiac modEl

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 SiGNATURE project word cloud

Explore the words cloud of the SiGNATURE project. It provides you a very rough idea of what is the project "SiGNATURE" about.

mechanisms    variability    genetic    phenotypes    precisely    evident    rates    candidates    diseases    discovery    immature    whom    imprinted    recapitulate    postnatally    molecular    functionally    human    contributions    gene    reveal    selecting    view    incidence    genes    screening    cms    replace    arrhythmias    electrical    drugs    limiting    expressed    autonomous    pluripotent    underlying    maturation    culture    aging    interdisciplinary    preferably    cell    3d    phenotype    private    first    conventional    expression    least    preclinical    markers    combining    academic    caused    cardiac    suitable    good    outcome    correlating    drug    hipsc    cardiomyocytes    mature    cardiomyocyte    expertise    genome    animal    function    disease    splice    gender    signature    presently    personalized    ethnic    electrophysiology    share    line    unexpected    sufficient    inter    cm    validated    individual    chemotherapeutics    lab    understand    simultaneously    lines    single    adult    variant    models    proof    safety    stem    host   

Project "SiGNATURE" data sheet

The following table provides information about the project.

Coordinator
ACADEMISCH ZIEKENHUIS LEIDEN 

Organization address
address: ALBINUSDREEF 2
city: LEIDEN
postcode: 2333 ZA
website: www.lumc.nl

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Netherlands [NL]
 Total cost 187˙572 €
 EC max contribution 187˙572 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2018
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2020
 Duration (year-month-day) from 2020-02-01   to  2022-01-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    ACADEMISCH ZIEKENHUIS LEIDEN NL (LEIDEN) coordinator 187˙572.00

Map

 Project objective

The incidence of cardiac arrhythmias in Europe is increasing because of aging and unexpected side effects of drugs, such as chemotherapeutics. To understand mechanisms underlying these conditions requires reliable preferably human models. Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) are presently good candidates since they share the genome of the individual from whom they are derived and can thus recapitulate genetic, ethnic and gender contributions to the cardiac disease phenotypes. However, their immature state and high inter- and intra-line variability is limiting their value as preclinical models. In the proposed project, I will address these issues through an interdisciplinary approach combining a unique 3D culture maturation system developed in my host lab with my expertise in electrophysiology. I will characterize gene expression and electrical properties of single cardiomyocytes simultaneously with view to directly correlating genes with function and identify molecular markers associated with the functionally mature cardiac phenotype. Two genetic cardiac diseases (one caused by an imprinted gene, the other by a postnatally expressed splice variant) for which the host already has hiPSC lines, will be used as proof of concept that hiPSC-CM maturation in this system is sufficient (i) to reveal disease phenotypes not evident in conventional culture and (ii) to identify molecular markers suitable for selecting mature hiPSC-CMs for drug testing. Overall, this project will provide the first functionally-relevant gene signature of (mature) hiPSC-CMs, and thus be an important advance in modelling all cardiomyocyte autonomous cardiac diseases more precisely for (personalized) drug screening. The outcome will be available to academic and private researchers to enhance rates of drug discovery and safety, and promote hiPSC-CMs as validated adult cardiac models to replace, at least in part, the use of animal models.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "SIGNATURE" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "SIGNATURE" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

LieLowerBounds (2019)

Lower bounds for partial differential operators on compact Lie groups

Read More  

MNSWLGM (2019)

An optofluidic platform based on liquid-gradient refractive index microlens for the isolation and quantification of extracellular vesicles

Read More  

5G-ACE (2019)

Beyond 5G: 3D Network Modelling for THz-based Ultra-Fast Small Cells

Read More