Opendata, web and dolomites

NG2-cells SIGNED

The role of NG2 cells in the neural network in health and disease

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 NG2-cells project word cloud

Explore the words cloud of the NG2-cells project. It provides you a very rough idea of what is the project "NG2-cells" about.

permanent    ng2    morphological    postnatal    central    considering    synaptic    neuronal    understand    density    physiological    turn    epilepsy    contribution    regenerative    edge    organisms    form    ranvier    pathologies    function    unknown    dysfunction    found    cells    multiple    alzheimer    oligodendrocytes    diseases    mechanisms    contacts    generate    underscores    sclerosis    nervous    cell    differentiate    loss    brain    cutting    will    subpopulation    oligodendrocyte    vivo    disease    structural    first    adult    node    capacity    myelination    multitude    white    combination    altered    questions    designed    retain    mature    self    parkinson    relationship    axons    population    entire    enhanced    neural    rendering    covers    therein    ensheathing    modulate    neurodegenerative    highest    grey    contact    regulate    differentiation    regulated    becomes    network    models    excitability    parenchyma    depolarize    healthy    onto    renewal    life    functional    glial    details    disorders    neurons    techniques    glia    weeks    huge    myelin   

Project "NG2-cells" data sheet

The following table provides information about the project.

Coordinator
EBERHARD KARLS UNIVERSITAET TUEBINGEN 

Organization address
address: GESCHWISTER-SCHOLL-PLATZ
city: TUEBINGEN
postcode: 72074
website: www.uni-tuebingen.de

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Germany [DE]
 Total cost 264˙669 €
 EC max contribution 264˙669 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2018
 Funding Scheme MSCA-IF-GF
 Starting year 2019
 Duration (year-month-day) from 2019-06-01   to  2022-05-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    EBERHARD KARLS UNIVERSITAET TUEBINGEN DE (TUEBINGEN) coordinator 264˙669.00
2    UNIVERSITY OF CONNECTICUT US (STORRS) partner 0.00

Map

Leaflet | Map data © OpenStreetMap contributors, CC-BY-SA, Imagery © Mapbox

 Project objective

Loss of myelin and oligodendrocyte dysfunction is being recognized in many neurodegenerative diseases, such as Multiple Sclerosis, Alzheimer's or Parkinson's disease or Epilepsy, although the mechanisms are not yet understood. Oligodendrocytes are generated from NG2 cells, a glial cell population that covers the entire parenchyma of the central nervous system. The multitude of disorders involving oligodendrocyte pathologies in grey and white matter underscores the importance to understand how oligodendrocyte differentiation and myelination are regulated, and the role of NG2 cells therein. The highest density of NG2 cells can be found during the first postnatal weeks, when they differentiate into mature oligodendrocytes ensheathing axons with myelin. NG2 cells retain the capacity for self-renewal throughout life, rendering them a huge regenerative potential in the adult brain. It is still unknown whether all NG2 cells have the same potential to generate oligodendrocytes or whether a subpopulation of them becomes permanent NG2 cells. Neurons form synaptic contacts onto NG2 cells and depolarize them, in order to regulate myelination. Considering the finding, that processes of NG2 glia contact neurons at the node of Ranvier, it could be possible that NG2 cells in turn are able to modulate neuronal activity. To address these questions, this project is designed to investigate how altered neuronal excitability affects the structural and functional relationship between neurons and NG2 cells and how these changes impact the neural network. Using a combination of several cutting-edge techniques, the details of the morphological contact formation as well as the physiological function of these contacts in vivo in models of enhanced neuronal activity will be assessed. The results will be a major contribution to understanding the role of NG2 cells in the neural network in healthy organisms as well as in the numerous diseases where oligodendrocytes are affected.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "NG2-CELLS" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "NG2-CELLS" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

TCFLAND2SEA (2020)

Thawing Carbon From LAND to SEA: Microbial Degradation of Organic Matter and Response to Thawing Permafrost in the Northeast Siberian Land-Shelf System

Read More  

EVOMET (2019)

The rise and fall of metastatic clones under immune attack

Read More  

Global-assembly (2018)

Building up the Milky Way Halo in the era of multiple stellar populations

Read More