Opendata, web and dolomites

CoEvolve SIGNED

Deconstructing and rebuilding the evolution of cell and tissue mechanoadaptation

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 CoEvolve project word cloud

Explore the words cloud of the CoEvolve project. It provides you a very rough idea of what is the project "CoEvolve" about.

physical    shift    coordinated    adapt    cells    dynamics    critical    play    matrix    body    full    conventional    appreciated    biophysical    vitro    progress    granting    extracellular    constantly    instigate    diseases    transmission    paradigm    cutting    therapeutics    physiology    downstream    accommodate    remodeling    biomaterial    principles    exceptionally    medicine    mal    behavior    local    manipulation    independently    rebuild    orchestrated    regenerative    directions    mechanical    spatiotemporal    cancer    tools    cell    fundamental    broad    dynamic    sensed    static    ecm    co    contributes    unravelling    reciprocity    equally    deconstruct    functional    dissect    transformation    interactively    functions    multiscale    feedback    variety    mechanoadaptation    cardiomyopathies    methodology    unprecedented    inspired    signal    environment    tissue    edge    thereby    regeneration    generating    elicit    global    roadmap    healthcare    adapts    morphogenesis    descriptions   

Project "CoEvolve" data sheet

The following table provides information about the project.

Coordinator
TECHNISCHE UNIVERSITEIT EINDHOVEN 

Organization address
address: GROENE LOPER 3
city: EINDHOVEN
postcode: 5612 AE
website: www.tue.nl/en

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Netherlands [NL]
 Total cost 1˙499˙601 €
 EC max contribution 1˙499˙601 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2019-STG
 Funding Scheme ERC-STG
 Starting year 2020
 Duration (year-month-day) from 2020-01-01   to  2024-12-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    TECHNISCHE UNIVERSITEIT EINDHOVEN NL (EINDHOVEN) coordinator 1˙499˙601.00

Map

 Project objective

Cells in our body are exceptionally robust: they constantly adapt their properties and behavior to their physical environment. Less appreciated but equally important, the extracellular matrix (ECM) around the cells also adapts to accommodate cell activity. This highly dynamic feedback between the cell and the ECM has been increasingly recognized to play a key role in not only tissue morphogenesis and functions, but also a variety of diseases, from cardiomyopathies to cancer. Moreover, it presents an unprecedented challenge in healthcare and therapeutics, especially regenerative medicine, as progress in this field requires a paradigm shift from conventional, static cell descriptions to a co-evolving cell and tissue physiology. This proposal aims to instigate this transformation by unravelling the fundamental biophysical principles behind cell–matrix dynamic reciprocity and generating a multiscale roadmap of mechanoadaptation critical in functional tissue regeneration. To achieve this goal, we will develop cutting-edge in vitro manipulation tools to deconstruct and rebuild the dynamics of cells and the ECM independently and interactively, thereby granting us full spatiotemporal control of each component in the system. Using this unique tissue-environment-inspired bottom-up approach, we will dissect how 1) physical changes in the environment are sensed and elicit response by the cell, 2) cell-induced ECM remodeling contributes to mechanical signal transmission, and 3) these local changes are orchestrated into global coordinated mechanoadaptation at the tissue level. The findings will have a broad impact on our fundamental understanding of cell and tissue physiology by identifying novel concepts in mechanoadaptation and will offer specific biomaterial design principles for tissue regeneration. The developed methodology will also advance the field in new directions by enabling further studies on downstream cell and tissue (mal)functions under dynamic conditions.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "COEVOLVE" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "COEVOLVE" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

CHIPTRANSFORM (2018)

On-chip optical communication with transformation optics

Read More  

CohoSing (2019)

Cohomology and Singularities

Read More  

CoolNanoDrop (2019)

Self-Emulsification Route to NanoEmulsions by Cooling of Industrially Relevant Compounds

Read More