Opendata, web and dolomites

UCL SIGNED

Unmanned Chemical Lab (UCL): autonomous control system for the remote management of soluble and emulsifiable metalworking fluids

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 UCL project word cloud

Explore the words cloud of the UCL project. It provides you a very rough idea of what is the project "UCL" about.

post    expert    ucl    accurate    artificial    using    service    relies    correction    waste    100    monitoring    health    week    fluid    life    roi    full    alter    keep    profit    bacterial    exposure    skin    cloud    novelty    intervene    unusable    pose    additives    amount    operation    reducing    negative    deterioration    emulsion    automatically    metalworking    foresee    water    continuous    fabrication    automatic    chemical    send    mew    poured    respiratory    susceptible    situ    fluids    intelligence    industries    risks    optimum    time    software    once    reactions    several    transportation    remotely    powered    12    manages    last    emulsions    operators    company    impacts    generate    platform    cumulative    metal    interventions    database    extensive    events    4m    alerting    smooth    measured    degradation    safety    drastically    lab    operator    either    commercialisation    reduce    restore    unmanned    45    rely    machinery    associate    disintegration    reys    disposal    mwf    risk    disposed    environmental    pours    pillars    workers    evaporation    ai    controls       predicts   

Project "UCL" data sheet

The following table provides information about the project.

Coordinator
REYS SPA 

Organization address
address: VIA CESARE BATTISTI 78
city: ARCORE
postcode: 20862
website: n.a.

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Italy [IT]
 Total cost 71˙429 €
 EC max contribution 50˙000 € (70%)
 Programme 1. H2020-EU.3. (PRIORITY 'Societal challenges)
2. H2020-EU.2.3. (INDUSTRIAL LEADERSHIP - Innovation In SMEs)
3. H2020-EU.2.1. (INDUSTRIAL LEADERSHIP - Leadership in enabling and industrial technologies)
 Code Call H2020-SMEInst-2018-2020-1
 Funding Scheme SME-1
 Starting year 2019
 Duration (year-month-day) from 2019-12-01   to  2020-03-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    REYS SPA IT (ARCORE) coordinator 50˙000.00

Map

 Project objective

Several industries such as transportation, machinery and metal fabrication rely on metalworking fluids (MWF) for smooth operation. Water-based MWF, especially emulsions are susceptible to deterioration due to factors such as bacterial growth or evaporation of water which alter the fluid characteristics. In order to keep MWF properties at their optimum, additives must be used. Currently, however, testing of parameters is done either once a week using hand-held devices or using automatic systems which send information to operators alerting them to intervene. If additives are not poured in time, the MWF become unusable and need to be disposed. MWF disposal is associated with high costs of waste management and negative environmental impacts. In addition, both MWF and additives pose health risks such as skin reactions and respiratory conditions. REYS S.p.A, an expert chemical production and fluid management company has developed the Unmanned Chemical Lab (UCL), a cloud-based platform that automatically predicts fluid degradation events, remotely manages and controls process fluids reducing drastically the health exposure risk to workers. Based on an extensive database on MWF parameters and interventions taken by operators, our system has an artificial intelligence (AI) software capable to determine the amount of additives required to restore parameters to their optimum and pours the measured additives automatically. UCL novelty relies on four major pillars: (1) AI powered software enables continuous, automatic and highly accurate monitoring of the emulsion providing correction of MEW parameters in real-time; (2) usage of less than 2% fluids and additives; (3) reduce MWF disintegration by 100% enabling the fluid to last its full-service life of a year and (4) 100% reduction of health and safety operator risks associate with in situ MWF measurements. We foresee to generate a cumulative profit of €2.4M, a ROI of 4.45 and 12 personnel, 5 years post commercialisation.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "UCL" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "UCL" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.3.;H2020-EU.2.3.;H2020-EU.2.1.)

AMBRPAY (2019)

Decentralized subscription payments with cryptocurrency

Read More  

BEMYEYES (2019)

Specialized Help from Be My Eyes – harnessing technology to connect companies directly with their blind and visually impaired users

Read More  

MHS (2019)

Metal Hydrides Hydrogen Storage

Read More