Opendata, web and dolomites

SSFI SIGNED

Spin-resolved strong field ionisation

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

Project "SSFI" data sheet

The following table provides information about the project.

Coordinator
AARHUS UNIVERSITET 

Organization address
address: NORDRE RINGGADE 1
city: AARHUS C
postcode: 8000
website: www.au.dk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Denmark [DK]
 Total cost 207˙312 €
 EC max contribution 207˙312 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2019
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2021
 Duration (year-month-day) from 2021-09-01   to  2023-08-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    AARHUS UNIVERSITET DK (AARHUS C) coordinator 207˙312.00

Map

 Project objective

Molecular movies depicting chemical reactions via attosecond (10^-18 s) snapshots, which vastly improve our understanding of molecular dynamics is within our grasp. Strong-field imaging techniques under development, such as photoelectron holography, promise just this. However, up until very recently all strong-field theoretical models have neglected spin and spin-orbit coupling. Initial work including spin in the initial state, along with recent experiments, has shown that spin in strong-field processes is vitally important, leading to different ionisation probabilities which in turn may alter the all important electron dynamics. In this project, I will utilise and develop cutting edge theoretical frameworks to fully include electron spin for strong-field processes in atoms and molecules. I will develop a semi-analytic model, which fully includes spin and spin-orbit coupling for single active electron and two active electron cases. This is motivated by the long history of semi-analytic methods that have been developed in this field, which have enabled unprecedented access into the electron dynamics for strong-field processes. As such, developing a model for spin will reveal deep new physical insight. I will validate the methodology by exploiting my supervisors expertise and contacts, collaborating with theorists employing complementary cutting-edge numerical models and with the only group of experimentalists to have performed spin measurements on strong-field processes. A proper treatment will allow more advanced and robust imaging techniques. I will explore the use of spin to enhance existing imaging processes such as photoelectron holography. Furthermore, I will develop the semi-analytic model for two electrons and explore spin entanglement and correlation with momentum in two-electron ionisation processes, to design entirely new imaging procedures. This analysis will also open up the possibility of exploiting this system for quantum information purposes.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "SSFI" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "SSFI" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

DIFFER (2020)

Determinants of genetic diversity: Important Factors For Ecosystem Resilience

Read More  

ReproMech (2019)

The Molecular Mechanisms of Cell Fate Reprogramming in Vertebrate Eggs

Read More  

INTEGRATE (2018)

An integrated hypothesis for cognitive and positive symptoms in schizophrenia

Read More