Opendata, web and dolomites

Class II PI3K

Characterization of the signalling and physiological roles of the class II PI3Ks

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 Class II PI3K project word cloud

Explore the words cloud of the Class II PI3K project. It provides you a very rough idea of what is the project "Class II PI3K" about.

membrane    hits    biology    basis    drug    models    mouse    performed    receptors    thereof    global    form    laboratory    phosphoinositide    coupled    uncover    physiological    pi3ks    subclasses    regulators    interacting    gene    unknown    explore    whereas    members    c2    beta    created    pi3k    tools    proteins    trafficking    signalling    kinases    kinase    inactive    exocytosis    knockout    endocytic    ideal    amongst    genes    cells    action    discovery    eight    recycling    generate    constitutive    dependent    conditional    emerged    contrast    implicated    ago    protein    vivo    initial    intracellular    endo    hence    traffic    influence    screen    roles    mammalian    signal    combination    mutated    class    model    unpublished    family    mice    transduction    delineate    mechanism    remained    lipid    group    alpha    host    expertise    enigmatic    migration    functions    lines    decade    poorly    exploited    regulation    downstream    cellular    excellent    messengers    knock    cancer    cell   

Project "Class II PI3K" data sheet

The following table provides information about the project.

Coordinator
UNIVERSITY COLLEGE LONDON 

Organization address
address: GOWER STREET
city: LONDON
postcode: WC1E 6BT
website: n.a.

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Project website http://www.ucl.ac.uk/cancer/research/department-oncology/cell-signalling-group
 Total cost 183˙454 €
 EC max contribution 183˙454 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2014
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2016
 Duration (year-month-day) from 2016-02-01   to  2018-01-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    UNIVERSITY COLLEGE LONDON UK (LONDON) coordinator 183˙454.00

Map

Leaflet | Map data © OpenStreetMap contributors, CC-BY-SA, Imagery © Mapbox

 Project objective

Phosphoinositide 3-kinases (PI3Ks) are lipid kinases that generate intracellular second messengers in signal transduction and membrane trafficking pathways and are important drug targets. This proposal seeks to delineate the roles and mechanism of action of a group of PI3Ks which have remained enigmatic ever since their discovery over a decade ago. The PI3K family comprises eight members in three subclasses. Class I PI3Ks signal downstream of growth factor and G protein-coupled receptors, are amongst the most commonly mutated genes in cancer and are being exploited as drug targets. The class II and III PI3Ks have in part emerged as regulators of membrane trafficking pathways but their physiological roles remain poorly understood. We aim to identify the physiological roles of the class II PI3K-C2α and β and to characterize the impact of their kinase activity on signalling pathways. To analyse the roles of class II PI3K activity in vivo, the Host Laboratory has created constitutive global and conditional knock-in kinase-inactive mice (unpublished). In contrast to PI3K gene knockout models, these mouse lines allow us to specifically address kinase-dependent functions and hence are an ideal model to evaluate the potential of class II PI3Ks as drug targets. The class II PI3K-C2α (C2α) is involved in endo- and exocytosis as well as endocytic recycling, whereas PI3K-C2β (C2β) has been implicated in cell migration. However, their influence on cellular signalling is unknown. As an initial approach, the Host Laboratory performed a screen for proteins interacting with C2α or C2β (unpublished). We will explore hits from this screen using the kinase-inactive knock-in mice and cells derived thereof as discovery tools. The combination of my expertise in membrane traffic and phosphoinositide regulation with the mouse and signalling studies of the Host Laboratory form an excellent and timely basis to uncover the roles of the class II PI3Ks in mammalian biology.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "CLASS II PI3K" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "CLASS II PI3K" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

RealFlex (2019)

Real-time simulator-driver design and manufacturing based on flexible systems

Read More  

TheaTheor (2018)

Theorizing the Production of 'Comedia Nueva': The Process of Play Configuration in Spanish Golden Age Theater

Read More  

GENI (2019)

Gender, emotions and national identities: a new perspective on the abortion debates in Italy (1971-1981).

Read More