Opendata, web and dolomites


Graphene curvature, flexibility and reactivity control by means of external fields: theory and computer simulations

Total Cost €


EC-Contrib. €






 GRAFLEX project word cloud

Explore the words cloud of the GRAFLEX project. It provides you a very rough idea of what is the project "GRAFLEX" about.

carrier    ripples    chemi    relevance    europe    kinetics    coherent    engineering    interaction    attain    expertise    vibrations    combination    emf    curvature    bio    flexoelectricity    gradient    strain    break    proponent    chemical    flexibility    train    functionalization    investigation    chosen    modulation    biomed    theoretical    correspond    hydrogen    tech    frequencies    quantum    reversible    electronic    harvesting    time    resume    enhancement    functional    electromagnetic    producing    trajectory    reactivity    thz    independent    connected    graphene    academia    nest    guarantee    external    resolved    theories    found    shown    electric    conversion    simulations    df    dynamical    curved    energy    traveling    initio    physis    perturbation    dependent    dynamics    group    extensive    graflex    attractive    sorption    nano    complementarity    consequent    calculation    conducting    ab    local    possibility    gained    sized    observe    density    feasibility    position    storage    material    chemistry   

Project "GRAFLEX" data sheet

The following table provides information about the project.


Organization address
city: ROMA
postcode: 185

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Italy [IT]
 Project website
 Total cost 180˙277 €
 EC max contribution 180˙277 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2014
 Funding Scheme MSCA-IF-EF-CAR
 Starting year 2015
 Duration (year-month-day) from 2015-09-08   to  2017-09-07


Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 


 Project objective

Graphene is a unique material with high potential for applications from high-tech to bio-tech. These capabilities are directly connected to graphene flexibility and electronic properties, as well as to the possibility of controlling them by chemical functionalization. Curvature related reactivity enhancement was shown, and curvature control has found several possible applications from H-storage and energy harvesting to biomed engineering. Thus, the control of graphene curvature is of high relevance. The aim of GRAFLEX is to investigate the process of curvature control by means of external electric- and electromagnetic fields (EMF), and the consequent curvature-dependent interaction with H, specifically focusing on the physis- to chemi-sorption reversible conversion. EMF in the range of THz will be chosen, since coherent graphene vibrations at those frequencies correspond to the traveling nano-sized ripples producing a local dynamical modulation of the curvature. To achieve this, we propose to use a state-of-the-art density functional (DF), DF perturbation, and trajectory based time dependent DF theories in combination with ab initio investigation of the kinetics and calculation of flexoelectricity response to the strain gradient in curved graphene. Conducting the proposed research after carrier break will help the proponent to resume research activities and to train in 1)using the most advanced theoretical methods to investigate properties in graphene/hydrogen system; 2)observe time-resolved information to exploit curvature control process. The complementarity expertise of researchers at NANO@NEST group of multi-scale simulations and proponent’s extensive experience trajectory based chemical dynamics, kinetics and quantum chemistry, together with attractive working conditions, guarantee the feasibility of this challenging project. The experience gained by the proponent within GRAFLEX will change her carrier path to attain an independent position in academia in Europe


year authors and title journal last update
List of publications.
2016 K Kakhiani and V Tozzini
Morphing Graphene
published pages: 86, ISSN: , DOI:
PLATINUM – Aziende e Protagonisti, Special Issue Research&Innovation November 2019-06-13

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "GRAFLEX" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email ( and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "GRAFLEX" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

NaWaTL (2020)

Narrative, Writing, and the Teotihuacan Language: Exploring Language History Through Phylogenetics, Epigraphy and Iconography

Read More  

ToMComputations (2019)

How other minds are represented in the human brain: Neural computations underlying Theory of Mind

Read More  

MingleIFT (2020)

Multi-color and single-molecule fluorescence imaging of intraflagellar transport in the phasmid chemosensory cilia of C. Elegans

Read More