Opendata, web and dolomites

GRAFLEX SIGNED

Graphene curvature, flexibility and reactivity control by means of external fields: theory and computer simulations

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 GRAFLEX project word cloud

Explore the words cloud of the GRAFLEX project. It provides you a very rough idea of what is the project "GRAFLEX" about.

train    chemical    physis    vibrations    independent    theoretical    conversion    graphene    traveling    ab    electric    nest    quantum    emf    thz    academia    observe    sorption    consequent    electronic    dynamical    group    guarantee    attain    curvature    chemistry    conducting    attractive    hydrogen    shown    break    theories    flexibility    curved    harvesting    correspond    initio    kinetics    engineering    found    sized    ripples    chosen    complementarity    simulations    proponent    interaction    perturbation    possibility    external    flexoelectricity    coherent    reactivity    position    chemi    bio    resume    gained    enhancement    combination    strain    biomed    extensive    dependent    electromagnetic    time    functionalization    graflex    expertise    relevance    trajectory    functional    energy    producing    frequencies    storage    modulation    resolved    material    tech    nano    connected    local    calculation    feasibility    investigation    reversible    gradient    density    europe    carrier    dynamics    df   

Project "GRAFLEX" data sheet

The following table provides information about the project.

Coordinator
CONSIGLIO NAZIONALE DELLE RICERCHE 

Organization address
address: PIAZZALE ALDO MORO 7
city: ROMA
postcode: 185
website: www.cnr.it

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Italy [IT]
 Project website http://www.muscade-lab.it/research/graphene
 Total cost 180˙277 €
 EC max contribution 180˙277 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2014
 Funding Scheme MSCA-IF-EF-CAR
 Starting year 2015
 Duration (year-month-day) from 2015-09-08   to  2017-09-07

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    CONSIGLIO NAZIONALE DELLE RICERCHE IT (ROMA) coordinator 180˙277.00

Map

 Project objective

Graphene is a unique material with high potential for applications from high-tech to bio-tech. These capabilities are directly connected to graphene flexibility and electronic properties, as well as to the possibility of controlling them by chemical functionalization. Curvature related reactivity enhancement was shown, and curvature control has found several possible applications from H-storage and energy harvesting to biomed engineering. Thus, the control of graphene curvature is of high relevance. The aim of GRAFLEX is to investigate the process of curvature control by means of external electric- and electromagnetic fields (EMF), and the consequent curvature-dependent interaction with H, specifically focusing on the physis- to chemi-sorption reversible conversion. EMF in the range of THz will be chosen, since coherent graphene vibrations at those frequencies correspond to the traveling nano-sized ripples producing a local dynamical modulation of the curvature. To achieve this, we propose to use a state-of-the-art density functional (DF), DF perturbation, and trajectory based time dependent DF theories in combination with ab initio investigation of the kinetics and calculation of flexoelectricity response to the strain gradient in curved graphene. Conducting the proposed research after carrier break will help the proponent to resume research activities and to train in 1)using the most advanced theoretical methods to investigate properties in graphene/hydrogen system; 2)observe time-resolved information to exploit curvature control process. The complementarity expertise of researchers at NANO@NEST group of multi-scale simulations and proponent’s extensive experience trajectory based chemical dynamics, kinetics and quantum chemistry, together with attractive working conditions, guarantee the feasibility of this challenging project. The experience gained by the proponent within GRAFLEX will change her carrier path to attain an independent position in academia in Europe

 Publications

year authors and title journal last update
List of publications.
2016 K Kakhiani and V Tozzini
Morphing Graphene
published pages: 86, ISSN: , DOI:
PLATINUM – Aziende e Protagonisti, Special Issue Research&Innovation November 2019-06-13

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "GRAFLEX" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "GRAFLEX" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

MY MITOCOMPLEX (2021)

Functional relevance of mitochondrial supercomplex assembly in myeloid cells

Read More  

LiverMacRegenCircuit (2020)

Elucidating the role of macrophages in liver regeneration and tissue unit formation

Read More  

CYBERSECURITY (2018)

Cyber Security Behaviours

Read More