Opendata, web and dolomites

NUTS

Nuclei Using Topological Solitons

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 NUTS project word cloud

Explore the words cloud of the NUTS project. It provides you a very rough idea of what is the project "NUTS" about.

simplest    wave    physics    stability    neutron    uniting    harnessing    mean    reasonable    fathoming    atoms    tremendous    binding    energies    phenomenological    mainly    correct    predict    combination    fundamental    predictions    yield    numerical    winding    reduce    fusion    independent    qualitative    analytic    hence    core    energy    helium    good    theory    description    life    independently    soliton    progress    experimental    solitons    sutcliffe    fitting    groups    extreme    heart    nonlinear    source    twenty    topological    opportunity    detached    found    computing    familiar    collaborators    particle    shown    nuclei    analytical    stars    constituents    failed    levels    everyday    data    naya    missing    models    breakthroughs    previously    too    solution    impossible    methodology    breaking    rodriguez    quantitative    ground    audacious    incredibly    made    supercomputers    supervisor    physicists    realm    equation    instead    twisting    link    nuclear    complexity    carbon    last    researcher   

Project "NUTS" data sheet

The following table provides information about the project.

Coordinator
UNIVERSITY OF DURHAM 

Organization address
address: STOCKTON ROAD THE PALATINE CENTRE
city: DURHAM
postcode: DH1 3LE
website: www.dur.ac.uk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Total cost 183˙454 €
 EC max contribution 183˙454 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2015
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2016
 Duration (year-month-day) from 2016-10-01   to  2018-09-30

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    UNIVERSITY OF DURHAM UK (DURHAM) coordinator 183˙454.00

Map

 Project objective

Particle physicists have a good understanding of the fundamental constituents of matter, but the complexity of the theory means that it is impossible (even with supercomputers) to use it to predict the properties of even the simplest atoms familiar from everyday life, such as helium and carbon. Fathoming the core of these atoms is the realm of nuclear physics, but current approaches are detached from fundamental theory and instead are mainly based on fitting phenomenological models to experimental data. The ambitious aim of this project is to provide the missing link between fundamental theory and nuclear physics. At the heart of the methodology for this audacious proposal is a concept known as a topological soliton -- a particle-like solution of a nonlinear wave equation, where stability is due to a topological twisting or winding. A combination of analytic and numerical work over the last twenty years has shown that topological solitons can provide a reasonable qualitative description of some aspects of nuclei, but a quantitative comparison has failed because of a long-standing problem that soliton predictions yield nuclear binding energies that are too large. However, in recent work by the researcher (Naya-Rodriguez) and collaborators, and independently by the supervisor (Sutcliffe), significant breakthroughs have been made that demonstrate the ability to reduce soliton binding energies to the correct nuclear physics levels and hence solve this long-standing problem. These new developments mean that this proposal is incredibly timely, and by uniting these two previously independent European groups there is an opportunity to make ground-breaking progress by developing these new analytical methods in combination with state-of-the-art computing capabilities. This will have a tremendous impact, particularly in the study of nuclear matter under extreme conditions, for example, as found in neutron stars and in harnessing the energy source offered by nuclear fusion.

 Publications

year authors and title journal last update
List of publications.
2018 Carlos Naya, Paul Sutcliffe
Skyrmions and Clustering in Light Nuclei
published pages: , ISSN: 0031-9007, DOI: 10.1103/PhysRevLett.121.232002
Physical Review Letters 121/23 2019-04-18
2018 Carlos Naya, Paul Sutcliffe
Skyrmions in models with pions and rho mesons
published pages: , ISSN: 1029-8479, DOI: 10.1007/JHEP05(2018)174
Journal of High Energy Physics 2018/5 2019-04-04

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "NUTS" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "NUTS" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

MultiSeaSpace (2019)

Developing a unified spatial modelling strategy that accounts for interactions between species at different marine trophic levels, and different types of survey data.

Read More  

MOSAiC (2019)

Multimode cOrrelations in microwave photonics with Superconducting quAntum Circuits

Read More  

ActinSensor (2019)

Identification and characterization of a novel damage sensor for cytoskeletal proteins in Drosophila

Read More