Opendata, web and dolomites

ARTES SIGNED

AntifeRromagnetic spin Transport and Switching

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 ARTES project word cloud

Explore the words cloud of the ARTES project. It provides you a very rough idea of what is the project "ARTES" about.

vector    understand    untapped    materials    afm    combined    direct    flop    observations    temperature    dependent    transport    hall    scalable    employ    domain    mnn    ions    iron    conductors    toward    predictions    heavy    voltage    spintronic    layer    disruptive    theoretical    magnetic    planar    probed    metal    play    additionally    magnetoresistance    explore    anisotropic    ascertain    class    writing    garnet    societal    modes    generating    afms    antiferromagnet    metals    migration    oxygen    anisotropies    speed    performed    magnetotransport    demonstrated    thermally    yttrium    correlated    sandwiched    enhancement    stability    eacute    spintronics    efficient    antiferromagnets       tremendous    synchrotrons    ferromagnets    resistance    nio    ultimate    el    seebeck    superfluid    spin    smr    physics    electrical    ing    superfluidity    thin    effect    magneto    magnon    employed    tackle    currents    signal    interface    indicate    insulators    imaging    questions    collinear    antiferromagnetic    injection    structure    pt    predicted    read    meet   

Project "ARTES" data sheet

The following table provides information about the project.

Coordinator
JOHANNES GUTENBERG-UNIVERSITAT MAINZ 

Organization address
address: SAARSTRASSE 21
city: MAINZ
postcode: 55122
website: www.uni-mainz.de

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Germany [DE]
 Total cost 159˙460 €
 EC max contribution 159˙460 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2017
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2019
 Duration (year-month-day) from 2019-01-01   to  2020-12-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    JOHANNES GUTENBERG-UNIVERSITAT MAINZ DE (MAINZ) coordinator 159˙460.00

Map

 Project objective

Magnetic materials and devices play a tremendous role in information technology to meet current societal challenges. Antiferromagnet (AFM) spintronics is considered as a disruptive approach, enabling scalable and efficient spintronic devices. Ultimate stability and speed, combined with recent observations, e.g. the enhancement of the spin current transport when a thin AFM layer is sandwiched between Yttrium Iron Garnet and Pt, and along with theoretical predictions of superfluid spin transport, indicate significant untapped potential of this class of materials. I tackle the key open questions on spin transport in AFMs: (i) To develop and employ an all-electrical read-out of the Néel vector. The Néel vector can be set, by studying AFMs across the spin-flop field, and then compared with the resulting magnetotransport signal. In collinear antiferromagnetic conductors, the anisotropic magnetoresistance/planar Hall effect will be used, while in these and others collinear AFMs, a read-out by the Spin-Hall Magneto-resistance (SMR) at the interface between the AFM and a heavy metal will be employed, e.g. in NiO/Pt and MnN/Pt. The SMR will be additionally correlated with direct imaging of the AFM domain structure, performed in synchrotrons. (ii) To explore a new writing method, based on the voltage control of magnetic properties, via the migration of oxygen ions, as demonstrated in ferromagnets, where the anisotropies can be tailored. (iii) To transport spin in antiferromagnets. By thermally generating spin currents via the spin Seebeck effect, I will study the transport in AFM metals and insulators. Temperature-dependent measurements allow us to ascertain the role of the different spin current magnon modes. Finally, the spin injection in NiO and the exciting predicted spin superfluidity in AFMs will be probed. This work is expected to be important, not only to understand the rich physics of spin transport in AFMs, but also toward using AFMs for novel spintronic devices.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "ARTES" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "ARTES" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

5G-ACE (2019)

Beyond 5G: 3D Network Modelling for THz-based Ultra-Fast Small Cells

Read More  

SAInTHz (2020)

Structuration of aqueous interfaces by Terahertz pulses: A study by Second Harmonic and Sum Frequency Generation

Read More  

LieLowerBounds (2019)

Lower bounds for partial differential operators on compact Lie groups

Read More