Opendata, web and dolomites

ARTES SIGNED

AntifeRromagnetic spin Transport and Switching

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 ARTES project word cloud

Explore the words cloud of the ARTES project. It provides you a very rough idea of what is the project "ARTES" about.

   modes    afms    untapped    questions    superfluidity    layer    seebeck    play    magnetoresistance    theoretical    nio    conductors    employed    signal    antiferromagnets    magnon    domain    iron    electrical    performed    magnetotransport    el    antiferromagnetic    effect    metal    direct    insulators    collinear    disruptive    predicted    writing    thermally    efficient    heavy    explore    spintronic    ascertain    generating    smr    spintronics    class    sandwiched    probed    garnet    materials    tackle    read    anisotropic    synchrotrons    ultimate    societal    oxygen    ing    structure    flop    interface    thin    afm    eacute    magnetic    additionally    spin    demonstrated    pt    currents    physics    hall    anisotropies    understand    imaging    speed    superfluid    planar    stability    antiferromagnet    meet    ferromagnets    mnn    combined    predictions    tremendous    magneto    vector    enhancement    migration    observations    ions    employ    yttrium    scalable    voltage    correlated    resistance    injection    temperature    toward    transport    indicate    metals    dependent   

Project "ARTES" data sheet

The following table provides information about the project.

Coordinator
JOHANNES GUTENBERG-UNIVERSITAT MAINZ 

Organization address
address: SAARSTRASSE 21
city: MAINZ
postcode: 55122
website: www.uni-mainz.de

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Germany [DE]
 Total cost 159˙460 €
 EC max contribution 159˙460 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2017
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2019
 Duration (year-month-day) from 2019-01-01   to  2020-12-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    JOHANNES GUTENBERG-UNIVERSITAT MAINZ DE (MAINZ) coordinator 159˙460.00

Map

 Project objective

Magnetic materials and devices play a tremendous role in information technology to meet current societal challenges. Antiferromagnet (AFM) spintronics is considered as a disruptive approach, enabling scalable and efficient spintronic devices. Ultimate stability and speed, combined with recent observations, e.g. the enhancement of the spin current transport when a thin AFM layer is sandwiched between Yttrium Iron Garnet and Pt, and along with theoretical predictions of superfluid spin transport, indicate significant untapped potential of this class of materials. I tackle the key open questions on spin transport in AFMs: (i) To develop and employ an all-electrical read-out of the Néel vector. The Néel vector can be set, by studying AFMs across the spin-flop field, and then compared with the resulting magnetotransport signal. In collinear antiferromagnetic conductors, the anisotropic magnetoresistance/planar Hall effect will be used, while in these and others collinear AFMs, a read-out by the Spin-Hall Magneto-resistance (SMR) at the interface between the AFM and a heavy metal will be employed, e.g. in NiO/Pt and MnN/Pt. The SMR will be additionally correlated with direct imaging of the AFM domain structure, performed in synchrotrons. (ii) To explore a new writing method, based on the voltage control of magnetic properties, via the migration of oxygen ions, as demonstrated in ferromagnets, where the anisotropies can be tailored. (iii) To transport spin in antiferromagnets. By thermally generating spin currents via the spin Seebeck effect, I will study the transport in AFM metals and insulators. Temperature-dependent measurements allow us to ascertain the role of the different spin current magnon modes. Finally, the spin injection in NiO and the exciting predicted spin superfluidity in AFMs will be probed. This work is expected to be important, not only to understand the rich physics of spin transport in AFMs, but also toward using AFMs for novel spintronic devices.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "ARTES" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "ARTES" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

MBL-Fermions (2020)

Probing many-body localization dynamics using ultracold fermions in an optical lattice

Read More  

DEF2DEV (2019)

Identification of the mode of action of plant defensins during root development and plant defense responses.

Read More  

SSHelectPhagy (2019)

Regulation of Selective autophagy by sulfide through persulfidation of protein targets.

Read More