Opendata, web and dolomites


Topological New Fermions under Laser and New Topological Material Exploring via Machine Learning

Total Cost €


EC-Contrib. €






 TNFL-TMML project word cloud

Explore the words cloud of the TNFL-TMML project. It provides you a very rough idea of what is the project "TNFL-TMML" about.

expects    biophysics    will    dynamics    industry    he    fundamental    parts    tddft    experiments    physical    exporters    dynamic    unsupervised    methodological    create    post    body    part1    aslo    tang    groups    dr    tmml    international    scientific    works    systemically    doctor    peizhe    academic    mpsd    materials    ml    experimental    discovery    attentions    calculations    electronic    technologies    dirac    regarded    models    zhang    publication    quantum    big    part2    theory    tnfl    good    rubio    attract    physics    optical    self    consolidate    discover    collaborations    tools    extensive    perturbation    involve    theoretical    chemistry    physicist    parallel    university    divided    prof    excitations    director    soon    data    scientists    fabricate    science    cheng    dft    leadership    angel    weyl    records    supervision    keep    bulk    algorisms    fermions    exotic    running    characterise    electron    verified    topological    stanford    group    intelligence    artificial    benefit    lots    ab    shou    initio    material   

Project "TNFL-TMML" data sheet

The following table provides information about the project.


Organization address
city: Munich
postcode: 80539

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Germany [DE]
 Total cost 171˙460 €
 EC max contribution 171˙460 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2017
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2018
 Duration (year-month-day) from 2018-04-01   to  2020-03-31


Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 


 Project objective

The project of “TNFL-TMML” is a fundamental and scientific project that will be carried out by Dr. Peizhe Tang under the supervision of Prof. Angel Rubio. Dr. Tang is a theoretical physicist with extensive experience and good publication records in the field of topological materials. Currently, he works in Prof. Shou-Cheng Zhang’s group at Stanford University as a post-doctor. Prof. Rubio is one of the leading exporters in fields of ab initio calculations of electron excitations and dynamics in Physics, Chemistry, and Biophysics. Now, he is the managing director of the theory department of MPSD (th-MPSD). This project will aslo involve collaborations with top international experimental groups, who will fabricate and characterise the proposed materials.

The proposed project “TNFL-TMML” is focusing on the topological fermions in the bulk states, including Dirac, Weyl and new fermions. These topological fermions can be regarded as new quantum states of matter and attract lots of attentions recently because of their exotic physical properties. Based on the studied objectives, the project of “TNFL-TMML” can be divided into two parts that will keep running in parallel. In Part1, Dr. Tang will study the electronic, optical and dynamic properties of new fermions beyond Dirac and Weyl models systemically via DFT, TDDFT and many body perturbation theory. He expects to discover the new physics and new quantum states of matter which can be verified by the future experiments soon. Part2 is about topological material discovery based on artificial intelligence technologies and self-developed unsupervised ML algorisms. In this part, new methods based on the Big Data of material science will be developed, which will benefit both for academic and industry in the future. Therefore, the success of “TNFL-TMML” will consolidate the leadership of th-MPSD group and create more advanced and effective methodological tools for other scientists in related fields.


year authors and title journal last update
List of publications.
2019 S. A. Sato, J. W. McIver, M. Nuske, P. Tang, G. Jotzu, B. Schulte, H. Hübener, U. De Giovannini, L. Mathey, M. A. Sentef, A. Cavalleri, A. Rubio
Microscopic theory for the light-induced anomalous Hall effect in graphene
published pages: , ISSN: 2469-9950, DOI: 10.1103/physrevb.99.214302
Physical Review B 99/21 2019-10-07
2019 S A Sato, P Tang, M A Sentef, U De Giovannini, H Hübener, A Rubio
Light-induced anomalous Hall effect in massless Dirac fermion systems and topological insulators with dissipation
published pages: 93005, ISSN: 1367-2630, DOI: 10.1088/1367-2630/ab3acf
New Journal of Physics 21/9 2019-10-07
2018 Lang Peng, Jing-Jing Xian, Peizhe Tang, Angel Rubio, Shou-Cheng Zhang, Wenhao Zhang, Ying-Shuang Fu
Visualizing topological edge states of single and double bilayer Bi supported on multibilayer Bi(111) films
published pages: , ISSN: 2469-9950, DOI: 10.1103/physrevb.98.245108
Physical Review B 98/24 2019-04-18

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "TNFL-TMML" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email ( and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "TNFL-TMML" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

EPIC (2019)

Evolution of Planktonic Gastropod Calcification

Read More  

MEM-ENTO (2020)

Tracing memory formation in a behaving animal: analysis of learning-induced morpho-functional plasticity along the bee’s olfactory system

Read More  

MS4Drug (2019)

An Innovative Mass Spectrometry-Based Workflow for Drug Discovery

Read More