Opendata, web and dolomites

4D STENT TERMINATED

4D shape memory polymers via microstereolithography for production of thermally responsive stents

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 4D STENT project word cloud

Explore the words cloud of the 4D STENT project. It provides you a very rough idea of what is the project "4D STENT" about.

site    tailor    combine    printed    yielding    globally    degradation    chemistries    compressed    andrew    material    device    poor    possessing    endothelial    entities    restricted    dr    relevance    life    metal    18    globe    stents    practical    nearly    organization    homer    disruptive    people    weems    possess    mechanical    disrupt    quality    limited    made    give    simulatenously    bulk    preventing    severely    4d    attacks    bio    utilize    click    surfaces    tube    thiol    cvd    cylindrical    polymers    recruit    cardiovascular    surface    polymerization    manufacturing    techniques    prototypes    treatment    ene    potentially    synthetic    cells    contemporary    photopolymerization    engineer    materials    dove    biomaterials    vessel    disease    biomaterial    orthogonally    health    reactions    medical    superior    microstereolithography    surgical    heart    prof    background    engineering    vanniasinkam    clinical    degradability    post    epoxide    commercial    implant    million    biocompatibility    opening    ultimately    biocompatible    world    ring    polymer    expertise    technological    memory    stenting    stent    delivered    citizens    degradable    market    biofouling    strokes    shape    catheter    shift   

Project "4D STENT" data sheet

The following table provides information about the project.

Coordinator
THE UNIVERSITY OF BIRMINGHAM 

Organization address
address: Edgbaston
city: BIRMINGHAM
postcode: B15 2TT
website: www.bham.ac.uk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Total cost 183˙454 €
 EC max contribution 183˙454 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2017
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2018
 Duration (year-month-day) from 2018-04-01   to  2020-03-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    THE UNIVERSITY OF BIRMINGHAM UK (BIRMINGHAM) coordinator 183˙454.00

Map

 Project objective

Cardiovascular disease (CVD) affects nearly 18 million people globally (World Health Organization) as a result of heart attacks and strokes. The current treatment for CVD includes opening the restricted vessel through the use of stenting with a cylindrical tube made of a biocompatible metal or polymer, compressed and delivered by a catheter to the implant site. However, contemporary stents are severely limited as a result of poor biocompatibility, degradability, and manufacturing techniques. The 4D Stent project will utilize microstereolithography to produce biomaterials with controlled surface chemistries, bulk material properties, and possessing shape memory to give rise to 4D biomaterials, a potentially disruptive technological shift in medical device engineering. The produced stents will possess shape memory, controlled degradation and mechanical properties, and can be produced rapidly through photopolymerization. Thiol-ene click reactions, along with epoxide ring opening reactions, will be used to tailor biomaterial chemistries and engineer spatially-controllable printed prototypes, ultimately yielding stent surfaces that can be bio-orthogonally tailored to simulatenously recruit endothelial cells while preventing biofouling, all as post-polymerization processing. Here, Andrew Weems will combine his background in biomaterials engineering of shape memory materials with the synthetic expertise of Prof. Andrew Dove in the field of degradable polymers, and the practical cardiovascular surgical knowledge of Dr. Homer-Vanniasinkam to produce 4D stents of clinical relevance. Ultimately, 4D STENT has the potential to disrupt the medical device market, providing superior clinical support to European citizens and commercial entities by improving quality of life around the globe.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "4D STENT" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "4D STENT" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

Widow Spider Mating (2020)

Immature mating as a novel tactic of an invasive widow spider

Read More  

TARGET SLEEP (2020)

Boosting motor learning through sleep and targeted memory reactivation in ageing and Parkinson’s disease

Read More  

LieLowerBounds (2019)

Lower bounds for partial differential operators on compact Lie groups

Read More