Opendata, web and dolomites

4D STENT TERMINATED

4D shape memory polymers via microstereolithography for production of thermally responsive stents

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 4D STENT project word cloud

Explore the words cloud of the 4D STENT project. It provides you a very rough idea of what is the project "4D STENT" about.

metal    nearly    attacks    severely    possess    mechanical    tailor    background    photopolymerization    clinical    endothelial    memory    recruit    18    contemporary    epoxide    stenting    reactions    polymerization    commercial    techniques    prof    weems    possessing    prototypes    yielding    bulk    globe    andrew    degradability    shape    practical    stents    medical    technological    polymers    stent    biofouling    microstereolithography    restricted    globally    combine    biomaterials    expertise    device    limited    people    compressed    manufacturing    synthetic    disruptive    surfaces    post    heart    surface    biocompatible    orthogonally    citizens    poor    health    made    simulatenously    quality    homer    treatment    site    shift    biomaterial    materials    biocompatibility    relevance    vanniasinkam    utilize    superior    cylindrical    million    vessel    dove    cvd    tube    disrupt    entities    degradation    implant    cells    engineering    dr    catheter    ene    thiol    cardiovascular    strokes    life    potentially    give    delivered    ultimately    chemistries    ring    click    4d    disease    opening    market    world    bio    organization    surgical    degradable    printed    preventing    engineer    material    polymer   

Project "4D STENT" data sheet

The following table provides information about the project.

Coordinator
THE UNIVERSITY OF BIRMINGHAM 

Organization address
address: Edgbaston
city: BIRMINGHAM
postcode: B15 2TT
website: www.bham.ac.uk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Total cost 183˙454 €
 EC max contribution 183˙454 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2017
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2018
 Duration (year-month-day) from 2018-04-01   to  2020-03-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    THE UNIVERSITY OF BIRMINGHAM UK (BIRMINGHAM) coordinator 183˙454.00

Map

 Project objective

Cardiovascular disease (CVD) affects nearly 18 million people globally (World Health Organization) as a result of heart attacks and strokes. The current treatment for CVD includes opening the restricted vessel through the use of stenting with a cylindrical tube made of a biocompatible metal or polymer, compressed and delivered by a catheter to the implant site. However, contemporary stents are severely limited as a result of poor biocompatibility, degradability, and manufacturing techniques. The 4D Stent project will utilize microstereolithography to produce biomaterials with controlled surface chemistries, bulk material properties, and possessing shape memory to give rise to 4D biomaterials, a potentially disruptive technological shift in medical device engineering. The produced stents will possess shape memory, controlled degradation and mechanical properties, and can be produced rapidly through photopolymerization. Thiol-ene click reactions, along with epoxide ring opening reactions, will be used to tailor biomaterial chemistries and engineer spatially-controllable printed prototypes, ultimately yielding stent surfaces that can be bio-orthogonally tailored to simulatenously recruit endothelial cells while preventing biofouling, all as post-polymerization processing. Here, Andrew Weems will combine his background in biomaterials engineering of shape memory materials with the synthetic expertise of Prof. Andrew Dove in the field of degradable polymers, and the practical cardiovascular surgical knowledge of Dr. Homer-Vanniasinkam to produce 4D stents of clinical relevance. Ultimately, 4D STENT has the potential to disrupt the medical device market, providing superior clinical support to European citizens and commercial entities by improving quality of life around the globe.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "4D STENT" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "4D STENT" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

TaPPiNG-EPI (2019)

Targeting Purinergic Pathway in drug-resistant epilepsy using human Neurons and Glia.

Read More  

MarshFlux (2020)

The effect of future global climate and land-use change on greenhouse gas fluxes and microbial processes in salt marshes

Read More  

TRIAGE (2019)

TRophic state Interactions with drivers of Aquatic greenhouse Gas Emissions

Read More