Opendata, web and dolomites


Maternal temperature history controls progeny vigour

Total Cost €


EC-Contrib. €






Project "MATHCOV" data sheet

The following table provides information about the project.


Organization address
postcode: NR4 7UH

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Total cost 195˙454 €
 EC max contribution 195˙454 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2017
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2018
 Duration (year-month-day) from 2018-07-01   to  2020-06-30


Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    JOHN INNES CENTRE UK (NORWICH) coordinator 195˙454.00


 Project objective

It has long been known that mother plants have a significant influence on progeny traits such as dormancy, seed size, and seedling growth vigour. Temperature is a highly influential environment factor on seeds, and can be sensed directly by either the mother plant or by developing seeds themselves, using an unknown mechanism to integrate temperature information over time. The endosperm plays an important role in the temperature regulation of dormancy, but and previously direct investigation of temperature-controlled events in the endosperm has been limited by the small seed size of the model species Arabidopsis. Here, I will investigate how temperature controls progeny dormancy and seedling growth vigour via endosperm in Brassica oleracea, a key vegetable species that contributes to human health and nutrition, using high resolution timeseries transcriptomics. Gene network and epigenetic profiles will be analysed dynamically and integrated for endosperm and embryo at different after temperature perturbations, to form a high resolution of early and late events that lead to temperature signals in seeds. This will enable the identification of key genes and stably-inherited epigenetic markers involved in temperature-induced differences in seed vigour difference. The resulting model will be tested in Arabidopsis and Brassica by knock-out mutant and transgenic experiments. This duel approach is an effective strategy to control risk. Avenues for the effective dissemination and exploitation of results will be developed by the fellow. Relevant training will be provided to during the fellowship. Ultimately, this project enable us to better understand seed vigour and could benefit seed companies, farmers and policy-makers by showing how to add resilience to environmental variation on seed performance.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "MATHCOV" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email ( and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "MATHCOV" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

NaWaTL (2020)

Narrative, Writing, and the Teotihuacan Language: Exploring Language History Through Phylogenetics, Epigraphy and Iconography

Read More  

DIE_CKD (2019)

Deciphering intrarenal communication to unvail mechanisms of chronic kidney diseases

Read More  

CIGNUS (2019)

CuInGaSe Nanowires Under the Sun

Read More