Opendata, web and dolomites

CausalBoost SIGNED

Using causal discovery algorithms to boost subseasonal to seasonal forecast skill of Mediterranean rainfall

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 CausalBoost project word cloud

Explore the words cloud of the CausalBoost project. It provides you a very rough idea of what is the project "CausalBoost" about.

seasonal    innovative    predictions    science    rainfall    season    warming    days    anthropogenic    impacts    marginal    desertification    limited    techniques    created    underlying    drivers    statistical    robustly    decision    conventional    wild    putting    drying    derive    makers    forecast    region    causing    med    systematically    felt    heatwaves    losses    relevance    climate    teleconnection    urgent    me    background    boost    inference    modelled    economic    failures    limitations    outcomes    dynamics    subseasonal    timescales    algorithms    probably    fires    gap    fundamental    droughts    corrections    crop    persistent    shortages    climatic    effort    mediterranean    hotspot    bias    vulnerability    ahead    sources    led    water    weather    combines    forecasts    s2s    risk    reducing    weeks    fall    prediction    models    time    predictability    discovery    position    overcome    approximately    puts    interdisciplinary    times    skill    causal    progress    atmospheric   

Project "CausalBoost" data sheet

The following table provides information about the project.

Coordinator
THE UNIVERSITY OF READING 

Organization address
address: WHITEKNIGHTS CAMPUS WHITEKNIGHTS HOUSE
city: READING
postcode: RG6 6AH
website: http://www.rdg.ac.uk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Total cost 212˙933 €
 EC max contribution 212˙933 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2018
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2020
 Duration (year-month-day) from 2020-03-01   to  2022-02-28

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    THE UNIVERSITY OF READING UK (READING) coordinator 212˙933.00

Map

 Project objective

The Mediterranean region (MED) is a hotspot of anthropogenic climate change and impacts are probably already felt today; recent heatwaves and persistent droughts have led to crop failures, wild fires and water shortages, causing large economic losses. Climate models robustly project further warming and drying of the region, putting it at risk of desertification. The particular vulnerability of this water-limited region to climatic changes has created an urgent need for reliable forecasts of rainfall on subseasonal to seasonal (S2S) timescales, i.e. 2 weeks up to a season ahead. This S2S time-range is particularly crucial, as the prediction lead time is long enough to implement adaptation measures, and short enough to be of immediate relevance for decision makers. However, predictions on lead-times beyond approximately 10 days fall into the so-called “weather-climate prediction gap”, with operational forecast models only providing marginal skill. The reasons for this are a range of fundamental challenges, including a limited causal understanding of the underlying sources of predictability. The proposed research effort aims to improve S2S forecasts of MED rainfall by taking an innovative, interdisciplinary approach that combines novel causal discovery algorithms from complex system science with operational forecast models. This will overcome current limitations of conventional statistical methods to identify relevant sources of predictability and to evaluate modelled teleconnection processes. The outcomes of this project will (i) identify key S2S drivers of MED rainfall, (ii) systematically evaluate them in forecast models, (iii) derive process-based bias corrections to (iv) boost forecast skill. My strong background in both causal inference techniques and atmospheric dynamics puts me in a unique position to lead this innovative effort and to achieve real progress in reducing the “weather-climate prediction gap” for the MED region.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "CAUSALBOOST" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "CAUSALBOOST" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

MY MITOCOMPLEX (2021)

Functional relevance of mitochondrial supercomplex assembly in myeloid cells

Read More  

LiverMacRegenCircuit (2020)

Elucidating the role of macrophages in liver regeneration and tissue unit formation

Read More  

SymCO (2020)

Asymptotic Symmetries: from Concepts to Observations

Read More