Opendata, web and dolomites

MOVE SIGNED

Modelling to Optimize Vector Elimination: Destabilising mosquito populations

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 MOVE project word cloud

Explore the words cloud of the MOVE project. It provides you a very rough idea of what is the project "MOVE" about.

resolution    regulation    almost    overcome    malaria    edge    undermine    borne    sustainably    routinely    mostly    vectors    extensive    interventions    entomologists    dissection    datasets    unexpected    persistence    dynamics    prediction    game    filling    integration    data    longitudinal    chagas    initial    population    elimination    explore    relies    ecological    eliminating    resistance    underpin    time    countries    closely    connectivity    tools    largely    move    unprecedented    hinders    methodological    science    rarely    unknown    demographic    ecology    reducing    strategies    inter    decline    simultaneously    evolutionary    insecticide    fragmentation    suppress    efforts    dengue    complexity    health    accelerate    closer    theory    diseases    cutting    public    models    vector    relative    dependence    least    endemic    altered    density    intend    gaps    control    ecologist    entomology    space    medical    quantitative    series    harness    arthropod    composition    metapopulation    declines    surveillance    community    sophisticated    populations    regulating    scientists    ecologists    analytical   

Project "MOVE" data sheet

The following table provides information about the project.

Coordinator
UNIVERSITY OF GLASGOW 

Organization address
address: UNIVERSITY AVENUE
city: GLASGOW
postcode: G12 8QQ
website: www.gla.ac.uk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Total cost 1˙259˙763 €
 EC max contribution 1˙259˙763 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2019-STG
 Funding Scheme ERC-STG
 Starting year 2020
 Duration (year-month-day) from 2020-02-01   to  2025-01-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    UNIVERSITY OF GLASGOW UK (GLASGOW) coordinator 1˙259˙763.00

Map

Leaflet | Map data © OpenStreetMap contributors, CC-BY-SA, Imagery © Mapbox

 Project objective

Control of vector-borne diseases from Chagas to Malaria to Dengue largely relies on reducing or eliminating the arthropod vector populations. These public health initiatives routinely lead to at least initial declines in vector populations. The challenge is that as populations decline, unexpected evolutionary (such as insecticide resistance) and ecological changes (such as population fragmentation and altered density-dependence) can occur that might facilitate or undermine control efforts. However, the relative importance of these ecological intra- and inter-specific processes in regulating vector populations is almost unknown, which hinders the prediction of vector population dynamics and how different interventions might be most effectively deployed to sustainably suppress vectors. Although vector surveillance has generated extensive high-resolution time series datasets to assess the factors that underpin population persistence and regulation, the cutting-edge analytical tools required to overcome the complexity of these data have been mostly developed by ecologists and have rarely been applied in medical entomology. Filling both these knowledge and methodological gaps will require closer integration of public health science, medical entomology and ecology that I intend to deliver through this proposal. As a quantitative ecologist, I will work closely with medical entomologists and public health scientists, to develop and apply sophisticated state-space models to longitudinal vector surveillance data from five malaria endemic countries. I will determine how interventions impact vector: 1) population regulation, 2) metapopulation connectivity and persistence, and 3) community composition. This unprecedented demographic dissection of vector populations will simultaneously challenge ecological theory and explore how to harness intra- and inter-specific processes in vector populations to accelerate 'end-game' strategies that move from vector control to elimination.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "MOVE" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "MOVE" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

HyperCube (2020)

HyperCube: Gram scale production of ferrite nanocubes and thermo-responsive polymer coated nanocubes for medical applications and further exploitation in other hyperthermia fields

Read More  

inSight (2019)

Moving a novel gene therapy paradigm to treat blindness to the market

Read More  

MCS-MD (2019)

The Molecular Dynamics of Membrane Contact Sites

Read More