Opendata, web and dolomites

NVS SIGNED

Nano Voltage Sensors

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 NVS project word cloud

Explore the words cloud of the NVS project. It provides you a very rough idea of what is the project "NVS" about.

nanorods    immune    imaging    neurons    origin    tools    shifts    spectral    brain    hence    combined    tissues    physiologists    ions    sensors    healthy    advantages    generally    photon    charges    diseased    larger    recording    quantum    single    ratiometric    lifetime    detection    sections    invasively    stark    cell    cross    neuroscientists    optically    hole    pairs    signals    shift    semiconductors    afford    nanoscale    fast    individual    release    opposes    excited    absorption    dipole    sites    voltage    record    interactions    functionalization    band    stores    minimal    membrane    muscle    action    separation    confined    affording    afforded    networks    emission    electric    performance    works    particle    seek    sensing    optimize    view    brightness    photoexcited    synaptic    understand    electron    edges    channel    post    nir    sensitivity    potentials    linear    self    events    effect    microscopy    stokes    ca2    emergent    modulated    spiking    ion    physical    synthesis    insert    tissue    noise    giving    heart    deep    multiple    sub    ultrafast    temporal    excitation    threshold    targetable    excellent    external    compatibility    photobleaching   

Project "NVS" data sheet

The following table provides information about the project.

Coordinator
BAR ILAN UNIVERSITY 

Organization address
address: BAR ILAN UNIVERSITY CAMPUS
city: RAMAT GAN
postcode: 52900
website: www.biu.ac.il

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Israel [IL]
 Project website https://nsbrbiu.wixsite.com/nsbr
 Total cost 3˙497˙553 €
 EC max contribution 3˙497˙553 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2014-ADG
 Funding Scheme ERC-ADG
 Starting year 2016
 Duration (year-month-day) from 2016-01-01   to  2020-12-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    BAR ILAN UNIVERSITY IL (RAMAT GAN) coordinator 2˙772˙553.00
2    INSTITUT NATIONAL DE LA SANTE ET DE LA RECHERCHE MEDICALE FR (PARIS) participant 225˙000.00
3    GEORG-AUGUST-UNIVERSITAT GOTTINGENSTIFTUNG OFFENTLICHEN RECHTS DE (GOTTINGEN) participant 175˙000.00
4    WEIZMANN INSTITUTE OF SCIENCE IL (REHOVOT) participant 175˙000.00
5    THE REGENTS OF THE UNIVERSITY OF CALIFORNIA US (OAKLAND CA) participant 150˙000.00

Map

 Project objective

To understand how the brain works, tools need to be developed that will allow neuroscientists to investigate how interactions between individual neurons lead to emergent networks. Towards this goal, we will develop targetable voltage sensing nanorods that self-insert into the cell membrane and optically and non-invasively record action potentials at the single particle and nanoscale level, at multiple sites and across a large field-of-view. In semiconductors, absorption and emission band edges are modulated by an external electric field, even more so when optically excited electron-hole pairs are confined, giving rise to the quantum confined Stark effect. The physical origin of this effect is in the separation of photoexcited charges, creating a dipole that opposes the external field. The proposed sensors will optically record action potential with unique advantages not offered by other methods: much larger voltage sensitivity, high brightness, and hence single-particle voltage sensitivity, large spectral shift (affording noise-immune ratiometric measurements), fast temporal response, minimal photobleaching, large Stokes shifts, large two-photon excitation cross sections, excellent performance in the NIR, and compatibility with lifetime imaging. The proposed sensors could afford, for example, the recording of pre- and post-synaptic membrane potentials, sub-threshold events, ultrafast spiking, individual ion channel activity, or a release of ions from single Ca2 stores. In addition, deep tissue imaging could be afforded by two photon microscopy and far-field non-linear temporal focusing combined with lifetime imaging. Here we seek to optimize all aspects of the sensors’ synthesis, functionalization, delivery, targeting and detection, in order to provide neuroscientists and physiologists a viable and user-friendly technology that will be generally useful for the study of action potential signals in the brain and in healthy or diseased heart and muscle tissues.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "NVS" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "NVS" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

ENUF (2019)

Evaluation of Novel Ultra-Fast selective III-V Epitaxy

Read More  

HD-Neu-Screen (2020)

HD-MEA-based Neuronal Assays and Network Analysis for Phenotypic Drug Screenings

Read More  

MITOvTOXO (2020)

Understanding how mitochondria compete with Toxoplasma for nutrients to defend the host cell

Read More