Opendata, web and dolomites

NVS SIGNED

Nano Voltage Sensors

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 NVS project word cloud

Explore the words cloud of the NVS project. It provides you a very rough idea of what is the project "NVS" about.

ions    photoexcited    compatibility    action    sensors    excellent    view    ratiometric    insert    diseased    generally    functionalization    tissues    electric    emergent    deep    stokes    hole    separation    self    record    photobleaching    sections    quantum    ultrafast    larger    single    optimize    events    invasively    signals    confined    edges    brain    emission    sensing    neurons    recording    targetable    sub    threshold    afforded    modulated    band    brightness    nir    affording    particle    pairs    hence    sites    fast    temporal    tissue    voltage    interactions    healthy    minimal    excitation    noise    performance    absorption    sensitivity    effect    muscle    individual    physical    spectral    tools    external    networks    shift    stores    detection    photon    synthesis    opposes    advantages    heart    synaptic    potentials    dipole    semiconductors    combined    stark    lifetime    cross    charges    linear    origin    nanoscale    membrane    post    ca2    cell    spiking    microscopy    channel    works    understand    electron    seek    multiple    immune    optically    release    imaging    nanorods    giving    excited    shifts    ion    neuroscientists    afford    physiologists   

Project "NVS" data sheet

The following table provides information about the project.

Coordinator
BAR ILAN UNIVERSITY 

Organization address
address: BAR ILAN UNIVERSITY CAMPUS
city: RAMAT GAN
postcode: 52900
website: www.biu.ac.il

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Israel [IL]
 Project website https://nsbrbiu.wixsite.com/nsbr
 Total cost 3˙497˙553 €
 EC max contribution 3˙497˙553 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2014-ADG
 Funding Scheme ERC-ADG
 Starting year 2016
 Duration (year-month-day) from 2016-01-01   to  2020-12-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    BAR ILAN UNIVERSITY IL (RAMAT GAN) coordinator 2˙772˙553.00
2    INSTITUT NATIONAL DE LA SANTE ET DE LA RECHERCHE MEDICALE FR (PARIS) participant 225˙000.00
3    GEORG-AUGUST-UNIVERSITAT GOTTINGENSTIFTUNG OFFENTLICHEN RECHTS DE (GOTTINGEN) participant 175˙000.00
4    WEIZMANN INSTITUTE OF SCIENCE IL (REHOVOT) participant 175˙000.00
5    THE REGENTS OF THE UNIVERSITY OF CALIFORNIA US (OAKLAND CA) participant 150˙000.00

Map

 Project objective

To understand how the brain works, tools need to be developed that will allow neuroscientists to investigate how interactions between individual neurons lead to emergent networks. Towards this goal, we will develop targetable voltage sensing nanorods that self-insert into the cell membrane and optically and non-invasively record action potentials at the single particle and nanoscale level, at multiple sites and across a large field-of-view. In semiconductors, absorption and emission band edges are modulated by an external electric field, even more so when optically excited electron-hole pairs are confined, giving rise to the quantum confined Stark effect. The physical origin of this effect is in the separation of photoexcited charges, creating a dipole that opposes the external field. The proposed sensors will optically record action potential with unique advantages not offered by other methods: much larger voltage sensitivity, high brightness, and hence single-particle voltage sensitivity, large spectral shift (affording noise-immune ratiometric measurements), fast temporal response, minimal photobleaching, large Stokes shifts, large two-photon excitation cross sections, excellent performance in the NIR, and compatibility with lifetime imaging. The proposed sensors could afford, for example, the recording of pre- and post-synaptic membrane potentials, sub-threshold events, ultrafast spiking, individual ion channel activity, or a release of ions from single Ca2 stores. In addition, deep tissue imaging could be afforded by two photon microscopy and far-field non-linear temporal focusing combined with lifetime imaging. Here we seek to optimize all aspects of the sensors’ synthesis, functionalization, delivery, targeting and detection, in order to provide neuroscientists and physiologists a viable and user-friendly technology that will be generally useful for the study of action potential signals in the brain and in healthy or diseased heart and muscle tissues.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "NVS" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "NVS" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

QUAMAP (2019)

Quasiconformal Methods in Analysis and Applications

Read More  

CoolNanoDrop (2019)

Self-Emulsification Route to NanoEmulsions by Cooling of Industrially Relevant Compounds

Read More  

OAlipotherapy (2018)

Long-retention liposomic drug-delivery for intra-articular osteoarthritis therapy

Read More