Opendata, web and dolomites


Fundamental Understanding of Nanoparticle chemistry: towards the prediction of Particulate emissions and Material synthesis

Total Cost €


EC-Contrib. €






 FUN-PM project word cloud

Explore the words cloud of the FUN-PM project. It provides you a very rough idea of what is the project "FUN-PM" about.

societies    tube    fuel    extensive    unresolved    chemistry    discoveries    chemical    engines    experimentally    particulate    carbonaceous    rate    synthesis    complementary    reaction    engine    constructed    conventional    incomplete    precursors    predict    newly    standards    successful    solutions    economy    constitute    absence    utilized    benefits    clean    functional    calculations    advantage    questions    revealed    molecular    unknown    considerable    answer    oxidation    inception    while    synchrotron    fluid    flame    fascinating    industrial    prediction    nanoparticle    fuels    base    otherwise    concerning    initio    urgent    living    transportations    extraordinary    reformulation    repetition    particle    kinetic    theoretical    codes    experimental    cfd    accurately    detection    optimized    ab    pah    transportation    nanomaterials    dynamics    limited    date    single    subsequent    modern    fun    isolated    combustion    full    technologies    citizens    coupled    innovative    disciplinary    tools    obtain    first    model    techniques    emissions    optimization    shock    pm    time    environment   

Project "FUN-PM" data sheet

The following table provides information about the project.


Organization address
address: RUE MICHEL ANGE 3
city: PARIS
postcode: 75794

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country France [FR]
 Total cost 1˙493˙838 €
 EC max contribution 1˙493˙838 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2017-STG
 Funding Scheme ERC-STG
 Starting year 2018
 Duration (year-month-day) from 2018-02-01   to  2023-01-31


Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 


 Project objective

While modern societies are facing urgent challenges related to reduction of particulate matter emissions from transportation engines, recent discoveries on the extraordinary properties of carbonaceous functional nanomaterials have revealed opportunities associated with large-scale, flame-based synthesis of these otherwise unwanted combustion products. In both cases, our ability to study new, optimized solutions based on the specific industrial end-user needs is limited by the absence of theoretical tools able to accurately predict the fluid dynamics and the chemistry involved in nanoparticle formation. Indeed, current knowledge on this fascinating but complex process is still rather incomplete. The proposed research program, FUN-PM, will apply an innovative multi-disciplinary, multi-step approach in order to finally answer many unresolved kinetic questions concerning in particular: 1) formation and growth of molecular PAH precursors; 2) particle inception; 3) subsequent particle growth and oxidation. Each single step will be experimentally isolated taking full advantage of complementary conventional shock tube techniques and up-to-date synchrotron-based detection technologies coupled to a newly constructed high-rate repetition shock tube. If successful, the novel synchrotron-shock tube techniques will be utilized for the first time to obtain unique information on unknown key processes. The experimental results, with extensive theoretical ab-initio calculations on relevant PAH reaction pathways, will constitute the base for the development of a comprehensive, detailed chemical kinetic model for particle chemistry applied to Real Fuels. Such model will improve the prediction capabilities of current CFD codes for use in engine design, fuel reformulation, or industrial process optimization, with considerable benefits to the standards of living of European citizens, the environment, and the EU economy, towards the future of clean transportations and novel nanomaterials.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "FUN-PM" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email ( and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "FUN-PM" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)


The Mass Politics of Disintegration

Read More  


The Enemy of the Good: Towards a Theory of Moral Progress

Read More  

MERIR (2019)

Methane related iron reduction processes in sediments: Hidden couplings and their significance for carbon and iron cycles

Read More