Opendata, web and dolomites

GyroSCoPe SIGNED

Geomorphic and Sedimentary responses to Climate Periodicity

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

Project "GyroSCoPe" data sheet

The following table provides information about the project.

Coordinator
HELMHOLTZ ZENTRUM POTSDAM DEUTSCHESGEOFORSCHUNGSZENTRUM GFZ 

Organization address
address: TELEGRAFENBERG 17
city: POTSDAM
postcode: 14473
website: www.gfz-potsdam.de

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Germany [DE]
 Total cost 1˙963˙229 €
 EC max contribution 1˙963˙229 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2019-COG
 Funding Scheme ERC-COG
 Starting year 2020
 Duration (year-month-day) from 2020-06-01   to  2025-05-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    HELMHOLTZ ZENTRUM POTSDAM DEUTSCHESGEOFORSCHUNGSZENTRUM GFZ DE (POTSDAM) coordinator 1˙963˙229.00

Map

 Project objective

Under the threat of ongoing global warming, predictions concerning how much temperatures will rise and precipitation will change are undergoing continual improvement, but the spatial distribution of predicted changes and their impacts on Earth-surface processes, notably erosion and sedimentation, are subject to great uncertainty. Such processes have immediate consequences for people living along alluvial or “transport-limited” rivers, which constitute the majority of rivers on Earth, yet their evolution in response to external forcing conditions is not well understood. In the GyroSCoPe project, I will address these knowledge gaps through an innovative approach that focuses on how periodic changes in climate affect Earth-surface processes. Specifically, because the dominant forcing frequencies have changed through time (notably at the Mid-Pleistocene Transition, MPT), and the frequency of each forcing period likely dictates how far downstream in alluvial channels impacts are felt, it should be possible to decipher the impacts of individual periodic forcings in the geologic record. To do this, I will apply novel tools to decipher erosion histories in mountainous regions, specifically at the MPT, and I will investigate alluvial fans and terraces in the context of a new numerical model developed by my group. These data will allow me to interpret the impact of a change in the dominant forcing period on hillslope erosion rates, track how this sediment propagates across landscapes through alluvial rivers, and thus provide a wealth of data that can be used to calibrate landscape-evolution and alluvial-channel models. This improved understanding of the fundamental impacts of the magnitude and frequency of periodic forcing on erosion rates and sediment transport through rivers will in turn enable (1) the use of terraces and fans as paleoclimate proxies, which can be used to test climate models and (2) predicting Earth-surface responses to ongoing and future climate changes.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "GYROSCOPE" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "GYROSCOPE" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

E-DIRECT (2020)

Evolution of Direct Reciprocity in Complex Environments

Read More  

inhibiTOR (2020)

Novel selective mTORC1 inhibitors

Read More  

Growth regulation (2019)

The wide-spread bacterial toxin delivery systems and their role in multicellularity

Read More