Opendata, web and dolomites

TreasureDrop SIGNED

Directed Evolution of Enzyme for Applied Biocatalysis at Ultrahigh Throughput in Picoliter Droplets

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 TreasureDrop project word cloud

Explore the words cloud of the TreasureDrop project. It provides you a very rough idea of what is the project "TreasureDrop" about.

microfluidic    designed    unite    catalysts    researched    few    empirical    varying    criteria    interface    overcome    screen    matthey    catalytic    dehydrogenase    micro    chemistry    track    unambiguous    synthetic    powerful    differing    millions    clones    record    droplet    furnished    mutagenesis    successful    directed    groups    meso    enzymes    correlates    droplets    expertise    final    evolution    modern    gain    lab    applicable    protein    bio    alcohol    evolve    successfully    near    economically    sophisticated    biocatalysts    biology    thereby    view    rounds    interestingly    mutant    desired    obtain    desymmetrization    highlight    regarding    group    colorimetric    paths    class    engineering    methodology    manner    though    academic    diol    perform    broadly    fluorometric    publication    proof    assays    limitations    hollfelder    screened    easily    arguable    potentially    limited    library    industrial    size    johnson    competencies    synthetically    biotransformation    selective    continue    chemists    routine    manageable    giving    hit   

Project "TreasureDrop" data sheet

The following table provides information about the project.

Coordinator
JOHNSON MATTHEY PLC 

Organization address
address: FARRINGDON STREET 25 5TH FLOOR
city: LONDON
postcode: EC4A 4AB
website: www.matthey.com

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Project website https://www.bioc.cam.ac.uk/hollfelder
 Total cost 183˙454 €
 EC max contribution 183˙454 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2016
 Funding Scheme MSCA-IF-EF-SE
 Starting year 2017
 Duration (year-month-day) from 2017-05-01   to  2019-04-30

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    JOHNSON MATTHEY PLC UK (LONDON) coordinator 183˙454.00

Map

 Project objective

Enzymes have established as a new class of catalysts in the field of modern synthetic chemistry and continue to gain in importance. Directed evolution is currently one of the most promising approaches aiming at enzymes with desired catalytic activities and it's potentially directly correlates with the library size that can be screened. One of the most powerful approaches to overcome these limitations is arguable the recently introduced microfluidic droplet technology; this methodology not only allows to quickly screen millions of clones in a cost effective manner, but is also broadly applicable since fluorometric as well as colorimetric assays can be used. Interestingly, even though numerous publication highlight its potential, an unambiguous evidence of its ability to provide synthetically relevant biocatalysts still needs to be furnished. In addition, access to this technology is currently limited to a few academic research groups and thus, this approach requires further implementation to evolve as an easily manageable lab routine in the near future. This project is designed to unite three competencies: i) the expertise of the Hollfelder Group in regarding micro-engineering and protein engineering in droplets, ii) the empirical knowledge of (bio)chemists at Johnson Matthey in view of economically successful industrial applications of biocatalysts and iii) the strong track record of the experienced researched to successfully solve problems at the biology/chemistry-interface. The objective of the project is to perform a proof-of-principle study by improving a well-known alcohol dehydrogenase for the selective desymmetrization of a meso-diol, thereby giving access to a synthetically sophisticated alcohol. In addition, the final aim is not only to obtain an improved mutant which allows to perform the selected biotransformation efficiently, but also a comparison of varying evolution paths differing in the criteria of hit selection between mutagenesis rounds.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "TREASUREDROP" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "TREASUREDROP" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

MingleIFT (2020)

Multi-color and single-molecule fluorescence imaging of intraflagellar transport in the phasmid chemosensory cilia of C. Elegans

Read More  

FOCUSIS (2020)

Focal volume Control Using Structured Illumination Sources

Read More  

ToMComputations (2019)

How other minds are represented in the human brain: Neural computations underlying Theory of Mind

Read More