Opendata, web and dolomites

INEVITABLE SIGNED

Optimization and performance improving in metal industry by digital technologies

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 INEVITABLE project word cloud

Explore the words cloud of the INEVITABLE project. It provides you a very rough idea of what is the project "INEVITABLE" about.

plants    demonstration    supervisory    tested    spire    secondary    networked    flexibility    reasoning    trl    operation    sustainable    final    mode    automation    models    innovative    emissions    competitive    optimized    metallurgic    plant    correlate    acquisition    slovenia    combined    primary    online    consumption    communication    sites    inevitable    autonomous    action    digitalized    scientific    interfaces    logics    realize    quality    technologies    competences    data    excellent    offline    nonferrous    industry    energy    sensor    spain    trials    resource    analytics    storage    digital    metal    steel    streams    manufactured    standardization    operators    time    smart    sectors    predictive    performance    full    manufacturing    alloys    whereas    cognitive    simultaneous    flexible    investment    industrial    qualities    efficiency    metals    casting    environment    indicators    monitoring    austria    co2    intensive    steelmaking    digitalization    transformation    transfer   

Project "INEVITABLE" data sheet

The following table provides information about the project.

Coordinator
INSTITUT JOZEF STEFAN 

Organization address
address: Jamova 39
city: LJUBLJANA
postcode: 1000
website: www.ijs.si

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Slovenia [SI]
 Total cost 6˙204˙415 €
 EC max contribution 5˙348˙817 € (86%)
 Programme 1. H2020-EU.2.1.5.3. (Sustainable, resource-efficient and low-carbon technologies in energy-intensive process industries)
 Code Call H2020-NMBP-SPIRE-2019
 Funding Scheme IA
 Starting year 2019
 Duration (year-month-day) from 2019-10-01   to  2022-09-30

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    INSTITUT JOZEF STEFAN SI (LJUBLJANA) coordinator 565˙875.00
2    ACRONI PODJETJE ZA PROIZVODNJO JEKLA IN JEKLENIH IZDELKOV DOO SI (JESENICE) participant 1˙049˙825.00
3    FUNDACION AZTERLAN ES (DURANGO) participant 592˙065.00
4    KUNGLIGA TEKNISKA HOEGSKOLAN SE (STOCKHOLM) participant 584˙352.00
5    VDEH-BETRIEBSFORSCHUNGSINSTITUT GMBH DE (DUSSELDORF) participant 527˙900.00
6    UNIVERZA V LJUBLJANI SI (LJUBLJANA) participant 514˙000.00
7    K1-MET GMBH AT (LINZ) participant 440˙047.00
8    SIDENOR ACEROS ESPECIALES SL ES (BASAURI BIZKAIA) participant 397˙507.00
9    VOESTALPINE STAHL GMBH AT (LINZ) participant 268˙619.00
10    EIBAR PRECISION CASTING SL ES (EIBAR) participant 227˙500.00
11    COMPUREG PLZEN SRO CZ (PLZEN) participant 119˙000.00
12    SIEMENS TRGOVSKO IN STORITVENO PODJETJE DOO SI (LJUBLJANA) participant 62˙125.00

Map

 Project objective

The INEVITABLE Innovative Action aims to realize a fully digitalized monitoring technology for an optimized and improved performance of manufacturing processes. Use cases from the energy and resource intensive sectors steel and nonferrous metals are addressed, whereas the considered manufacturing sites are in Slovenia, Austria and Spain covering primary and secondary steelmaking and investment casting of nonferrous metal alloys. The focus of INEVITABLE is to develop high-level supervisory control systems for different production plants and on the demonstration in operational environment (TRL 7) to enable autonomous operation of the processes based on embedded cognitive reasoning. Key Performance Indicators will be defined related to resource consumption and product qualities. Based on that, a full digital transformation of the plants will be done including acquisition, storage, processing and analytics of data streams, furthermore, communication and automation, and finally, standardization of relevant data interfaces. Predictive models will be developed being combined with smart and networked sensor technologies to correlate process parameters with quality indicators of the manufactured products. The models will be tested in offline mode on the one hand, and in online mode on the other hand by means of comprehensive plant trials at the industrial partner sites. Dissemination activities will transfer the knowledge throughout the SPIRE sectors. The industrial partners are supported by scientific partners with excellent competences in the field of digitalization. INEVITABLE will improve the capabilities for reliable and real-time control logics of final product properties and process efficiency to increase the flexibility of plant operators. Improved and flexible production performance is expected with a simultaneous reduction of resource consumption and CO2 emissions contributing to a more competitive and sustainable metallurgic industry within the EU.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "INEVITABLE" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "INEVITABLE" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.2.1.5.3.)

HyperCOG (2019)

Hyperconnected Architecture for High Cognitive Production Plants

Read More  

PERFORM (2019)

PowerPlatform: Establishment of platform infrastructure for highly selective electrochemical conversions

Read More  

REVaMP (2020)

Retrofitting equipment for efficient use of variable feedstock in metal making processes

Read More